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Abstract

A common problem in physics and engineering is the calculation of the minima of energy functionals. The theory of

Sobolev gradients provides an efficient method for seeking the critical points of such a functional. We apply the method

to functionals describing coarse-grained Ginzburg–Landau models commonly used in pattern formation and ordering

processes.
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1. Introduction

Many problems in mathematical physics are formulated in terms of finding critical points of energy

functionals. The recent theory of Sobolev gradients [1] provides a unified point of view on such problems,
both in function spaces and in finite dimensional approximations to such problems. The aim of this work is

to demonstrate the use and efficiency of Sobolev gradient techniques in minimising energy functionals

associated with Ginzburg–Landau models for studying phase transitions in alloys and complex fluids.

These equations are prototypical for studying pattern formation or ordering, such as nucleation and

spinodal decomposition, that are accompanied by instabilities. We illustrate our work with models A and B

in the Halperin–Hohenberg taxonomy, in which the coarse-grained field or the order parameter (OP) is

either not conserved (model A) or conserved (model B) [2].

A gradient of a functional gives the direction of greatest change per unit change in the argument of
the functional. Often overlooked is that the direction of a gradient strongly depends on how the size of
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arguments of a functional are measured. Functionals of interest in physics, particularly energy func-

tionals, commonly include derivatives of the arguments. Such arguments have to be considered large if

some of its derivatives are large. Theoretical considerations of such functionals must take this into ac-

count but is often overlooked in numerical approximations. The theory of Sobolev gradients [1] is an

organized account of how to choose a metric for a finite dimensional problem that matches that required

for the corresponding theoretical problem. It is found that a proper matching leads to gradients (Sobolev

gradients) which are considerably smoother than those normally used [3]. The result is that the approach

to a minimum energy configuration becomes much more efficient. In fact, the improvement in perfor-
mance using Sobolev gradients becomes infinite as mesh size goes to zero. This paper illustrates this

phenomenon in some typical problems of interest in phase separation and pattern formation. The layout

of the paper is as follows: An introduction to Sobolev gradients in Section 2 is followed by a description

in Section 3 of Ginzburg–Landau models and how Sobolev gradient techniques may be employed. In

Section 4 we compare the results for minimization using ordinary gradients (functional derivatives) and

in an appropriate Sobolev space in 1, 2, and 3 dimensions, with different grid spacings and with different

boundary conditions. If we consider steepest descent as being a time evolution from a higher energy state

to a lower energy state, then a theoretical bound on how large our time step can be is given by the
Courant–Freiderichs–Lewy (CFL) condition [4]. Beyond this limit, the numerical scheme for steepest

descent will magnify errors in each step. This implies that for the traditional steepest descent schemes the

step size will have to be decreased as grid spacing becomes finer, the dimension of the problem is in-

creased or the order of the derivatives in the problem increases. The Sobolev gradient technique avoids

these problems [3]. When we use ordinary gradients we label our results ‘‘L2’’ runs since ordinary gra-
dients are closely related to attempts at defining a gradient in L2ðXÞ, the space of square integrable
functions in a region X. In Section 5 we consider model A0, which is model A with a constraint, namely,

the average value of the OP is conserved. This model has a different Sobolev gradient than model A and
is an alternative to the Cahn–Hilliard equation (model B) when dynamics is not of interest. We compare

results for minimization in L2 using the Cahn–Hilliard approach to model A
0 minimization in the ap-

propriate Sobolev space in 1, 2, and 3 dimensions with different grid spacings and with different

boundary conditions. In Section 6 we extend model A0 to models of surfactant systems which have higher

order derivatives. For the models we have studied, the Sobolev gradient technique becomes increasingly

attractive as grid spacing is refined, dimension is increased, or the order of the derivatives in the problem

becomes higher.
2. The Sobolev gradient approach

Sobolev gradients essentially provide an organized numerical procedure of determining preconditioners.

An energy functional can be generically written as:

JðuÞ ¼
Z

X
F ðDuÞ; ð1Þ

where X is a domain in Euclidean space, u is a member of an appropriate function space and Du is a list of
(length n, say) consisting of u and all partial derivatives of u which are relevant to the problem at hand. F is
a function on an appropriate Euclidean space. For example, consider X to be a rectangular region in R2, F
is a function on R3 so that

F ðw; r; sÞ ¼ ðr2 þ s2Þ
2

þ w4

4
� w2

2
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for all numbers w, r, s, and D is the transformation Du ¼ ðu; ux; uyÞ for all u on X with well-defined partial
derivatives. Eq. (1) then takes the form

JðuÞ ¼
Z

X
F ðDuÞ ¼

Z ðu2x þ u2yÞ
2

"
þ u4

4
� u2

2

#
dr;

which is one of the functionals we will deal with in this paper. Returning to our general considerations of
(1), we perform a first variation

J 0ðuÞh ¼
Z

X
F 0ðDuÞDh:

At this point we depart from custom and do not integrate by parts to obtain the Euler–Lagrange equations.

Instead, we write

J 0ðuÞh ¼
Z

F 0ðDuÞDh ¼ hDh; ðrF ÞðDuÞiL2ðXÞn : ð2Þ

We note that

hDh;DgiL2ðXÞ3 ¼
Z

X
ðhg þ hxgx þ hygyÞ;

the inner product in the Sobolev space H 1;2ðXÞ [1,5].
By L2ðXÞ we mean the Hilbert space of real functions on X in which

kf k2L2ðXÞ ¼
Z

X
f 2:

By H 1;2ðXÞ we mean the subspace of L2ðXÞ consisting of all f so that the norm

kf k2H1;2ðXÞ ¼
Z

X
ðf 2 þ f 2x þ f 2y Þ

is defined.

We introduce a transformation P which is essential to our presentation. Take P to be the orthogonal
projection of L2ðXÞn onto the subspace of all elements of the form Du. Such a transformation can be dealt
with in a concrete way computationally. From (2),

J 0ðuÞh ¼ hDh; ðrF ÞðDuÞiL2ðXÞn ¼ hPDh; ðrF ÞðDuÞiL2ðXÞn ¼ hDh; P ðrF ÞðDuÞiL2ðXÞn :

These are legitimate steps since PDh ¼ Dh and orthogonal projections may be passed form one side of an
inner product to the other. We need one more inner product:

hg; hiS ¼ hDg;DhiL2ðXÞn :

In terms of this inner product,

J 0ðuÞh ¼ hDh; P ðrF ÞðDuÞiL2ðXÞn ¼ hh; ðrSJÞðuÞiS;

where ðrSJÞðuÞ is defined as the first element in the list

P ðrF ÞðDuÞ:
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The function ðrSJÞðuÞ is called the Sobolev gradient of J at the element u. To make the above calculations
useful the projection P must be presented in a suitable form and the relevant details are given later. In a

number of previous applications of the methods (e.g., transonic flow [1], Ginzburg–Landau functionals for

superconductivity [1]) it has been known that Sobolev gradients give vastly superior results to those ob-

tained with ordinary gradients. In what follows, slight variations of the above will be used, these variations

take into account a variety of boundary and other external conditions.
3. Application to Ginzburg–Landau models

Models A and B are defined by the equations

ou
ot

¼ � dJ
du

and
ou
ot

¼ r2 dJ
du

;

respectively, where J is a free energy functional. The static and dynamical properties of these models have
been extensively studied, primarily in numerical work related to coarsening and growth of domains [2,6].

The functional JðuÞ usually has a polynomial form that depends on the nature of the phase transition as the
coefficient of the quadratic term changes sign (as a function of temperature, pressure or some other

thermodynamic variable). The widely used form with terms in u2 and u4 is associated with a second order or
continuous transition, where there is no jump discontinuity such as latent heat.

We seek to minimize the model A free energy functional

JðuÞ ¼
Z

1

4
u4

�
� 1
2
u2 þ j

2
jruj2

�
dr

over some volume subject to certain boundary conditions. The coefficient j determines the energy penalty
for interfaces.

In one dimension the problem can be reformulated as minimization of

Jðu0; u1Þ ¼
Z

1

4
u40

�
� 1
2
u20 þ

j
2
u21

�
dx

subject to the constraint that the L2ðXÞ functions u0 and u1 are of the form

ðu0; u1Þ ¼ ðf ; fxÞ

for some H ð1;2ÞðXÞ function f . We seek a projection operator that maps ðu0; u1Þ in L2ðXÞ � L2ðXÞ to the
closest point in the subspace consisting of points of the form ðf ; fxÞ. This is given by minimizing the integral

I ¼
Z

ðf
h

� u0Þ2 þ ðfx � u1Þ2
i
dx

over the interval subject to specified constraints. Minimizing I gives the condition

ð1� o2xÞf ¼ u0 � oxu1:

A steepest descent scheme in L2ðXÞ would be of the form

u ! u� krJðuÞ;
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where k is some scalar and rJðuÞ is the variation of J with respect to u subject to boundary conditions. We
instead perform a steepest descent in the space where the gradient is given by the projection we already

found:

rJðu0; u1Þ ¼ ð1� o2xÞ
�1 oJðu0; u1Þ

ou0

�
� ox

oJðu0; u1Þ
ou1

	
:

This is equivalent to changing the norm of candidate functions from

kf k2 ¼
Z

f 2 dx

to

kf k2 ¼
Z

f 2 dxþ
Z

f 2x dx

again subject to appropriate constraints such as boundary conditions.
4. Results for model A

In this section, we report results for model A in one dimension with periodic and Dirichlet boundary

conditions. The coefficient j was set to 1.0 for all the numerical trials. For periodic boundary conditions,
systems of M nodes with spacing h were set up with random initial values for the order parameter u such
that the average value hui ¼ 0:05 at t ¼ 0. The final minimum energy configuration should have u ¼ 1:0
everywhere. The number of iterations, the largest step k that could be used, and the CPU time to obtain

u > 0:99 everywhere in the system are noted in the tables. The next three entries in the tables are the number
of iterations, step, and CPU time required when using the Sobolev gradient technique. For Dirichlet
boundary conditions the order parameter u was set to 0.01 everywhere except at the ends where u was fixed
at zero. The program was terminated when the magnitude of the L2 gradient was less than 10�5 everywhere
in the system.

When minimizing in L2ðXÞ we note that the largest step size that can be used for each minimization step
decreases as the grid spacing is halved, as is implied by the CFL condition. However, steepest descent using

the Sobolev gradient does not suffer from this limitation. At each minimization step we first estimate the

usual L2 gradient, using finite differences to estimate derivatives. Thus, for model A we estimate

rF ¼ u3 � u�r2u. Using the Sobolev gradient the energy is minimized by a step u ! u� k � rSF , where
rSF is the Sobolev gradient we want to use. Thus, at each minimization step we need to find the

Sobolev gradient, given the usual L2 gradient. This Sobolev gradient satisfies the linear equation
ð1�r2ÞrSF ¼ rF . This is solved iteratively. The first time we need to calculate the Sobolev gradient we
do not have a good initial guess, however, in subsequent iterations the Sobolev gradient serves as a good

initial guess. The Sobolev gradients vary smoothly as the minimization progresses and so an iterative

procedure is less costly computationally than using a direct solver each time. Since the operator (1�r2) is

symmetric, positive definite, we use a conjugate gradient solver. Steepest descent and Jacobi iteration result

in longer run times.
Results are reported for a single Dec Alpha EV68 CPU. The difference in codes for the L2 minimization

and the Sobolev space minimization is that in the case of the Sobolev space minimization a call to a solver

that estimates the Sobolev gradient, given the L2 gradient, is made and then the Sobolev gradient is used
instead of the L2 gradient.
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One-dimensional model A

Periodic boundary conditions (BCs)

Nodes

M
Spacing

h
Iterations

(L2)
Step k
(L2)

CPUs

(L2)
Iterations Step k CPUs

210 1.0 18 0.32 0.00391 10 0.6 0.0195

211 0.5 48 0.11 0.0127 10 0.6 0.0684

212 0.25 173 0.030 0.0859 10 0.6 0.325

213 0.125 665 0.0077 0.682 10 0.6 1.08

214 0.0625 2674 0.0019 5.87 10 0.6 3.07

215 0.03125 10,514 0.00048 51.22 10 0.6 9.75

Dirichlet BCs
For small systems with large spacings the time taken by the solver negates the advantage of being able to

Nodes

M
Spacing

h
Iterations

(L2)
Step k
(L2)

CPUs

(L2)
Iterations Step k CPUs

210 1.0 38 0.32 0.00586 30 0.6 0.0146

211 0.5 115 0.11 0.0244 33 0.6 0.0361

212 0.25 425 0.030 0.166 52 0.6 0.159

213 0.125 1660 0.0077 1.32 136 0.6 0.906

214 0.0625 6730 0.0019 11.64 370 0.6 5.04

215 0.03125 26,643 0.00048 105.33 1029 0.6 29.69
use a much larger step k when using a Sobolev gradient. However, as the system becomes larger and the

spacing finer, the Sobolev gradient technique is more efficient.

Two-dimensional model A

Systems now have M2 nodes.
Dirichlet BCs

M h Iterations (L2) k (L2) CPUs (L2) Iterations k CPUs

25 1.00 77 0.19 0.0127 36 0.6 0.0263

26 0.50 263 0.056 0.15 39 0.6 0.181

27 0.25 989 0.015 2.58 83 0.6 2.46

28 0.125 3909 0.0038 53.09 207 0.6 28.38

29 0.0625 15,306 0.00097 1210.78 640 0.6 387.78

Periodic BCs

M h Iterations (L2) k (L2) CPUs (L2) Iterations k CPUs

25 1.00 27 0.19 0.005859 10 0.6 0.0107

26 0.50 90 0.056 0.0576 10 0.6 0.0693
27 0.25 332 0.015 0.939 10 0.6 0.709

28 0.125 985 0.0038 14.58 10 0.6 7.52

29 0.0625 3846 0.00097 301 10 0.6 77.7
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Again we note that the finer the spacing the less CPU time the Sobolev gradient technique uses in

comparison to the usual steepest descent. For model A results in two dimensions the same step size k can be
used for all spacings h when minimizing in the appropriate Sobolev space. The step size for minimization in
L2 has to decrease as the spacing is refined, we note that it has to decrease much faster in two dimensions
than in one.
Three-dimensional model A

Systems now have M3 nodes.

Periodic BCs

M h Iterations (L2) k (L2) CPUs (L2) Iterations k CPUs

25 1.00 36 0.14 0.303 8 0.6 0.676

26 0.50 124 0.40 7.99 8 0.6 7.55
27 0.25 494 0.010 429.16 14 0.6 91.64

Dirichlet BCs
The three-dimensional models also show that as the spacing becomes finer it is advantageous to use the

Sobolev gradient technique. We also note from the preceding tables that as the dimension of the problem
increases the Sobolev gradient technique becomes more efficient. In one-dimensional Sobolev gradients are

more efficient for a spacing h ¼ 0:25, as compared to three dimensions where they are more efficient for
spacing h ¼ 0:5.

M h Iterations (L2) k (L2) CPUs (L2) Iterations k CPUs

25 1.00 119 0.14 0.857 41 0.6 2.32

26 0.50 417 0.040 27.57 55 0.6 25.12

27 0.25 2115 0.010 1395.67 171 0.6 591.31
5. Conservation constraint

For model A type systems the order parameter u is not conserved. A Cahn–Hilliard [7] or Model B
system which would conserve the order parameter is given by

ut ¼ Cr2 dJðuÞ
du

� �
:

Suppose we wish to find the minima of some Model A type functional and we require conservation of the
order parameter u during the course of the simulation, without regard to the actual dynamics. We can use a
second projection operator to enforce conservation rather than increase the order of our evolution equation

by two.

In order that
R
udu not change, we need to project our gradient onto the subspace of L2ðXÞ functions

with integral zero. This is achieved for a function f by

f ! f �
R
f
:

V
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We will use the term model A0 for model A with this constraint as we do not solve for model B dynamics.

The order parameter u is now taken to be a relative concentration of two fluids A and B with concentrations
qA, qB, such that q ¼ qA þ qB and u ¼ ðqA � qBÞ=q.
We use the free energy

J ¼
Z

a
4
ð1

�
� u2Þ � T þ T

2
ð1þ uÞ logð1=2þ u=2Þ þ T

2
ð1� uÞ logð1=2� u=2Þ þ j

2
jruj2

�
: ð3Þ

This free energy contains the entropy of mixing. Phase separation depends on the temperature T . When T is
greater than the critical temperature Tc ¼ a=2 the two phases mix completely. When T is less than Tc there
will be domains of positive and negative u. The lower T is, the greater can be the possible maximum values
of juj at equilibrium. That is, phase separation between fluids A and B is more complete at lower T values.
The model B approach would result in an increase in the order of the derivatives of the evolution scheme

by two. Imposing conservation through a projection means that this can be avoided. As a result, a Sobolev

gradient approach for modeling systems with conservation constraints is even more efficient in comparison

to the usual approach. The step size need not be reduced for finer spacings when using a Sobolev gradient

scheme. Minimization was performed on systems with random initial conditions and hui ¼ 0:05, and a ¼ 2,
T ¼ 0:8, j ¼ 1:0 until the magnitude of the L2 gradient was less than 10�5 everywhere. By comparing results
in 2 and 3 dimensions we notice from the tables that the Sobolev gradient scheme is even more efficient in

three dimensions than it is in two when compared to the traditional approach.

Two-dimensional binary system with periodic BCs

Three-dimensional binary system with periodic BCs

These numerical experiments with model A0 demonstrate that it is considerably more efficient to use a

M h Iterations (L2) k (L2) CPUs (L2) Iterations k CPUs

25 1.00 680,000 0.027 50.34 314 0.95 0.433

26 0.50 2,516,565 0.0018 740 645 0.95 5.26

27 0.250 4,420,185 0.00012 5187 1937 0.95 98.63

M h Iterations k CPUs Iterations k CPUs

25 1.00 418,515 0.012 6291 323 0.95 33.23

26 0.50 594,233 0.00086 68,523 214 0.95 418
projection to enforce conservation of the order parameter if the final equilibrium configuration is all that is

important.
6. Surfactant systems

The addition of a surfactant to an oil–water system can be modeled by allowing j become negative [8] in
the free energy (3). This favors the presence of interfaces between the two components of the mixture and

thus mimics the action of surfactant in allowing the oil and water to ‘‘mix’’ with the formation of bicon-
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tinuous domains separating the oil and water. We also add a curvature dependent term for a bending

energy of the form

Eb ¼
c
2
ðr2uÞ2

to the binary system free energy. By changing c one can change the shape of domains from circular to oval.
The surfactant model enables us to examine how the Sobolev gradient approach and the traditional

schemes compare when the order of the derivatives increases. The coefficient c was set to 1.0 and other
parameters and initial conditions were as given in Section 5.
Two-dimensional surfactant system with periodic BCs

Three-dimensional surfactant system with periodic BCs

It is clear that a model B minimization with sixth order derivatives will be much slower than using model

A0. We report results for the Sobolev gradient technique only.

7. Summary and conclusions

We have presented minimization schemes for model A Ginzburg–Landau functionals based on the

Sobolev gradient technique [1,5]. The Sobolev gradient technique is computationally more efficient than the
usual steepest descent method as the spacing of the numerical grid is made finer, the dimension of the

problem is increased, the order of the derivatives in the functional is increased, or a conservation constraint

is imposed. Our results indicate that Sobolev gradient techniques may offer distinct advantages in certain

cases, particularly for problems involving functionals that contain spatial gradients such as strain based

elasticity problems [9], least square formulations of partial differential equations, and electrostatic problems

that require solving the Poisson–Boltzmann equation.

An interesting question is whether there exists an optimal metric with respect to which the Sobolev

gradient works best. It is an open research problem to try to find such an optimal metric, even though the
optimal one would likely not make a large difference computationally in all cases. An example of where

there is a great difference is in near-singular problems where a weighted Sobolev gradient, weighted with the

singularity in question, works vastly better [10]. The likely fact that we cannot yet find an optimal metric

may well be responsible for the nonlinear dependence of run time on number of grid points noted in this

work.

M h Iterations (L2) k (L2) CPUs (L2) Iterations k CPUs

25 1.00 4,853,277 0.0043 4696 43,234 0.5 336

26 0.50 27,103,876 0.000062 45,250 4798 0.5 449

27 0.250 96,649,780 0.00000096 97,327 5450 0.5 2038

M h Iterations k CPUs

25 1.00 30,320 0.5 6636

26 0.50 55,268 0.5 630,839
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